Plasma fatty acids, adiposity, and variance of skeletal muscle insulin resistance in type 2 diabetes mellitus.

نویسندگان

  • D E Kelley
  • K V Williams
  • J C Price
  • T M McKolanis
  • B H Goodpaster
  • F L Thaete
چکیده

Skeletal muscle insulin resistance (IR) is typically severe in type 2 diabetes mellitus (DM). However, the factors that account for interindividual differences in the severity of IR are not well understood. The current study was undertaken to examine the respective roles of plasma FFA, regional adiposity, and other metabolic factors as determinants of the severity of skeletal muscle IR in type 2 DM. Twenty-three subjects (12 women and 11 men) with type 2 DM underwent positron emission tomography imaging using [18F]2-fluoro-2-deoxyglucose during euglycemic insulin infusions (120 mU/min x m2) to measure skeletal muscle IR, using Patlak analysis of the tissue activity curves. Body composition analysis included body mass index, fat mass, and fat-free mass by dual energy x-ray tomography, and computed tomography determinations of visceral adiposity, thigh adipose tissue distribution, and muscle composition. Body mass index, fat mass, subfascial adiposity in the thigh, and visceral adipose tissue (VAT) were all significantly related to skeletal muscle IR (r = -0.48 to -0.63; P < 0.01). However, the strongest simple correlate of IR in skeletal muscle was insulin-suppressed plasma FFA (r = -0.81; P < 0.001). VAT was the sole component of adiposity that significantly correlated with insulin-suppressed plasma FFA concentration (r = 0.64; P < 0.001). These findings indicate that the severity of skeletal muscle IR in type 2 DM is closely related to the IR of suppressing lipolysis and that plasma fatty acids and VAT are key elements mediating the link between obesity and skeletal muscle IR in type 2 DM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basic disturbances in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus.

The present article addresses the hypothesis that disturbances in skeletal muscle fatty acid handling in abdominal obesity and type 2 diabetes mellitus may play a role in the aetiology of increased adipose tissue stores, increased triacylglycerol storage in skeletal muscle and skeletal muscle insulin resistance. The uptake and/or oxidation of fatty acids have been shown to be impaired during po...

متن کامل

Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance.

The current study was undertaken to examine metabolic and body composition correlates of fatty liver in type 2 diabetes mellitus (DM). Eighty-three men and women with type 2 DM [mean body mass index (BMI): 34 +/- 0.5 kg/m2] and without clinical or laboratory evidence of liver dysfunction had body composition assessments of fat mass (FM), visceral adipose tissue (VAT), liver and spleen computed ...

متن کامل

The Effects of Simvastatin on Free Fatty Acids Profile in Fructose-fed Insulin Resistant Rats

Backgrounds: Type 2 diabetes mellitus is the most common metabolic disease and free fatty acids, as signaling molecules, can play a crucial role in the development of it. Different free fatty acids, through various cell membrane receptors, induce different effects on metabolic pathways and thereby affect insulin sensitivity. Simvastatin is a cholesterol decreasing drug prescrib...

متن کامل

Obesity and Insulin Resistance: An Abridged Molecular Correlation

A relationship between obesity and type 2 diabetes is now generally well accepted. This relationship represents several major health hazards including morbid obesity and cardiovascular complications worldwide. Diabetes mellitus is a complex metabolic disorder characterized by impaired insulin release and insulin resistance. Lipids play an important physiological role in skeletal muscle, heart, ...

متن کامل

Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle.

Insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally associated with increases in intramuscular fatty acid metabolites. Fatty acid transport protein 1 (FATP1) is an acyl-CoA synthetase highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism by converting fatty acids into fatty acyl-CoA. To investigate the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical endocrinology and metabolism

دوره 86 11  شماره 

صفحات  -

تاریخ انتشار 2001